top of page
Papers
[37] Cooperative Brønsted Acid-Single Atom Photocatalysis in Metal–Organic Framework
Jung, Y.; Lee, C. W.; Lee, B-H.; Yu, Y.; Moon, J.; Lee, H. S.; Ko, W.; Bok, J.; Lee, K.; Lee, J. Bootharaju, M. S.;
Ryu, J.; Kim, M; Hyeon, T
J. Am. Chem. Soc. 2024, ASAP, 10.1021/jacs.4c13057
[36] Unraveling Serial Degradation Pathways of Supported Catalysts through Reliable Electrochemical Liquid-Cell TEM Analysis
Kim, S.; Kwag, J.; Lee, M.; Kang, S.; Kim, D.; Oh, J.-G.; Heo, Y.-J.*;, Ryu, J*.; Park, J.*
J. Am. Chem. Soc. 2024, ASAP, 10.1021/jacs.4c08825
[35] Dynamic Polarization Control of Ni Substrates for Sustainable and Scalable Water Electrolysis
Han, S.; Kim, S.; Cho, H. J.; Lee, J.-Y.*; Ryu, J*.; Yoon, J.*
Nature Communications -Revised Manuscript Submitted
[34] Optimizing Electrochemical Furfural Hydrogenation on Pt via Bimetallic Colocalization of Cu
Han, S.; Kim, J.; Shim, J.; Lee, W. B.; Ryu, J*.; Yoon, J.*
ACS Catalysis 2024, 14, 17525
[33] Intermittent Polarity Inversion of Stainless-steel Paired Electrodes for Efficient and Durable Water Electrolysis
Han, S.; Ryu, J*.; Yoon, J.*
Chemical Engineering Journal 2024, 157603
[32] Closed-loop Photo-and Electrocatalysis using Floatable Hierarchical Hydrogel Device for Efficient Waste-derived Fuel Production
Lee, W. H.; Lee, S.; Park, H.; Kim, H.; Jeong, J. H.; Lee, C. W.; Heo, J.; Lee, Y.-H.; Shin, Y.; Ahn, K. H.; Bootharaju, M. S.; Lee, B.-H.; Ryu, J.; Hyeon, T.; Sung, Y.-E.; Kim, D.-H.
Device 2024, 100515
[31] Tailoring Cobalt Spinel Oxide with Site-specific Single Atom Incorporation for High-Performance Electrocatalysis
Lee, K.; Shim, J.; Ji, H.; Kim, J.; Lee, H. S.; Shin, H.; Bootharaju, M. S.; Lee, K.-S.; Ko, W.; Lee, J.; Kim, K.; Yoo, S.; Heo, S.; Ryu, J.; Back, S.; Lee, B.-H.; Sung, Y.-E.; Hyeon. T.
Energy Environ. Sci. 2024, 17, 3618
[30] Photochemical Tuning of Dynamic Defects for High-performance Atomically Dispersed Catalysts
Lee, C. W.; Lee, B.-H, Park, S.; Jung, Y.; Han, J.; Heo, J.; Lee, K.; Ko, W.; Yoo, S.; Bootharaju, M. S.; Ryu, J.;
Nam, K. T.; Kim, M.; Hyeon, T.
Nature Materials 2024, 23, 552
[29] Translating the Optimized Durability of Co‐Based Anode Catalyst into Sustainable Anion Exchange Membrane Water Electrolysis
Han, S.; Ryu, J. H.; Lee, W. B.; Ryu, J.; Yoon, J.
Small 2024, 2311052
[28] Highly Efficient Nitrogen‐Fixing Microbial Hydrogel Device for Sustainable Solar Hydrogen Production
Lee, W. H.; Yoon, C.‐K.; Park, H..; Park, G.‐H..; Jeong, J. H.; Cha, G. D.; Lee, B.‐H.; Lee, J.; Lee, C. W.; Bootharaju, M. S.; Sunwoo, S.‐H.; Ryu, J.; Lee, C.; Cho, Y.‐J.; Nam, T.‐W.; Ahn, K. H.; Hyeon, T.; Seok, Y.‐J.; Kim, D.‐H.
Advanced Materials 2024, 35, 2306092
[27] Polarization-Induced Inversion of Singlet and Triplet Excited States
Ryu, J.; Bryan, K.; Rieth, A. J.; Kim, C. A.; Campbell, B. M.; Gordon. J. B.; Seo, J.; Voorhis, T. V.; Nocera, D. G.
TBD
[26] A Straightforward Model for Quantifying Local pH Gradients Governing the Oxygen Evolution Reaction
Veroneu, S. S.; Hartnett, A. C.; Ryu, J.; Hong, H.; Costentin, C.; Nocera, D. G.
J. Am. Chem. Soc. 2024, 146, 18925.
[25] Power of Polarization: A Critical Role of Interfacial Field in Heterogeneous Catalysis
Ryu, J.; Surendranath, Y. - TBD
[24] An Electrochemical Approach for Designing Thermochemical Bimetallic Nitrate Hydrogenation Catalysts
Lodaya, K.; Tang, B.; Bisbey, R.; Weng, S.; Westendorff, K.; Toh, W. J.; Ryu, J.; Surendranath, Y.
Nature Catalysis 2024, 7, 262.
[23] Thermochemical Aerobic Oxidation Catalysis in Water Can be Analysed as Two Coupled Electrochemical Half Reactions
Ryu, J.; Bregante, D, Howland, W., Bisbey, R., Kaminsky, C.; Surendranath, Y.
Nature Catalysis 2021, 4, 742.
“Highlighted in Joule”
“Highlighted in MIT News”
“Featured by MIT Energy Futures”
[22] Electrolyte Competition Controls Surface Binding of CO Intermediates to CO2 Reduction Catalysts
Wuttig, A.; Ryu, J.; Surendranath, Y.
J. Phys. Chem. C 2021, 125, 17042.
[21] Polarization-Induced Local pH Swing Promotes Pd-catalyzed CO2 Hydrogenation
Ryu, J.; Surendranath, Y.
J. Am. Chem. Soc. 2020, 142, 13384.
[20] Tracking Interfacial Field Strength at Pt/H2O during Hydrogen Catalysis
Ryu, J.; Surendranath, Y.
J. Am. Chem. Soc. 2019, 141, 15524.
[19] Quantification of Interfacial pH Variation at Molecular Length Scales Using a Concurrent Non-Faradaic Reaction
Ryu, J.; Wuttig, A.; Surendranath, Y.
Angew. Chem. Int. Ed. 2018, 57, 9300.
[18] Bicarbonate is Not a General Acid in Au-Catalyzed CO2 Electroreduction
Wuttig, A.; Yoon, Y.; Ryu, J.; Surendranath, Y.
J. Am. Chem. Soc. 2017, 139, 17109.
[17] In Situ Transformation of Hydrogen-Evolving CoP Nanoparticles: Toward Efficient Oxygen Evolution Catalysts Bearing Dispersed Morphologies with Co-oxo/hydroxo Molecular Units
Ryu, J.; Jung, N.; Jang, J. H.; Kim, H.–J.; Yoo, S. J.
ACS Catalysis 2015, 5, 4066.
“Featured as the Most Read and Cited Article from ACS catalysis”
[16] Organic/inorganic Hybrid PtCo Nanoparticle with High Electrocatalytic Activity and Durability for Oxygen Reduction
Jung, N.; Bhattachargee, S.; Gautam, S.; Park, H.-Y.; Ryu, J.; Chung, Y.-H.; Lee, S.-Y.; Jang, I.; Jang, J.-H.; Park, S.-H.; Chung, D. Y.; Sung, Y.-E.; Chae, K.-H.; Waghmare, U. V.; Lee, S.-C.; Yoo, S. J.
NPG Asia Materials 2016, 8, e237.
[15] Morphology-Controlled Synthesis of Ternary Pt-Pd-Cu Alloy Nanoparticles for Efficient Electrocatalytic Oxygen Reduction Reactions
Ryu, J.; Choi, J.; Lim, D-H.; Seo, H.-L.; Lee, S.-Y.; Sohn, Y.; Park, J.-H.; Jang, J. H.; Kim, H.-J.; Hong, S. A.; Kim, P.; Yoo, S. J.
Appl. Catal. B: Environ. 2015, 174, 526.
[14] Green Synthesis of Carbon-Supported Nanoparticle Catalysts by Physical Vapor Deposition on Soluble Powder Substrates
Park, H.-Y.; Jang, I.; Jung, N.; Chung, Y.-H.; Ryu, J.; Cha, I. Y.; Kim, H.-J.; Jang, J. H.; Yoo, S. J.
Sci. Rep. 2015, 5, 14245.
[13] Facile Synthesis of Hollow Fe-N-C Hybrid Nanostructures for Oxygen Reduction Reactions
Lee, J. H.; Park, M.; Jung, J. H.; Ryu, J.; Cho, E.; Nam, S. W.; Kim, J. Y.; Yoon, C. W.
Inorg. Chim. Acta 2014, 442, 3.
“Special Issue: Dedicated to Don Tilley”
[12] Surface-Rearranged Pd3Au/C Nanocatalysts by Using CO-Induced Segregation for Formic Acid Oxidation Reactions
Lee, S.-Y.; Jung, N.; Cho, J.; Park, H.-Y.; Ryu, J.; Jang, I.-J.; Kim, H.-J.; Cho, E.; Park, Y.-H.; Ham, H. C.; Jang, J. H.; Yoo, S. J.
ACS Catalysis 2015, 4, 2402.
[11] Pt-based Nanoarchitecture and Catalyst Design for Fuel Cell Applications
Jung, N.; Chung, D. Y.; Ryu, J.; Sung, Y.-E.; Yoo, S. J.
Nano Today 2014, 9, 433.
[10] Carbon Dioxide Mediated, Reversible Chemical Hydrogen Storage Using a Pd Nanocatalyst Supported on Mesoporous Graphitic Carbon Nitride
Lee, J. H.; Ryu, J.; Kim, J. Y.; Nam, S. W.; Lim, T.-H.; Yoon, C. W.
J. Mater. Chem. A 2014, 2, 9490.
“Featured in Front Cover”
[9] P-Modified and Carbon Shell Coated Co Nanoparticles for Efficient Alkaline Oxygen Reduction Catalysis
Ryu, J.; Jung, N.; Lim, D-H.; Shin, D. Y.; Park, S. H.; Ham, H. C.; Jang, J. H.; Kim, H.-J.; Yoo, S. J.
Chem. Comm. 2014, 50, 15940.
[8] Chemical Tuning of Electrochemical Properties of Pt-skin Surfaces for Highly Active Oxygen Reduction Reactions
Jung, N.; Chung, Y.-H.; Chung, D. Y.; Choi, K.-H.; Park, H.-Y.; Ryu, J.; Lee, S.-Y.; Kim, M.; Sung, Y.-E.; Yoo, S. J.
Phys. Chem. Chem. Phys. 2013, 15, 17079.
“Featured in Back Cover”
[7] Orthogonal Reactivity of Acyl Azides in C-H Activation: Dichotomy Between C-C and C-N Amidations Based on Catalyst Systems
Shin, K.; Ryu, J.; Chang, S.
Org. Lett. 2014, 16, 2022.
[6] Mechanistic Studies of the Rhodium-Catalyzed Direct C-H Amination Reaction Using Azides as the Nitrogen Source
Park, S. H.; Kwak, J.; Shin, K.; Ryu, J.; Park, Y.; Chang, S.
J. Am. Chem. Soc. 2014, 136, 2492.
[5] Hydrogen-Bond-Assisted Controlled C-H Functionalization via Adaptive Recognition of a Purine Directing Group
Kim, H. J.; A, Manjaly.; Lee, Y.; Ryu, J.; Kim, J.; Lee, Y.; Jung, Y.; Chang, S.
J. Am. Chem. Soc. 2014, 136, 1132.
[4] Ir(III)-Catalyzed Mild C-H Amidation of Arenes and Alkenes: An Efficient Usage of Acyl Azides as the Nitrogen Source
Ryu, J.; Kwak, J.; Shin, K.; Lee, D.; Chang, S.
J. Am. Chem. Soc. 2013, 135, 12861.
“Selected Paper in Cheminform”
[3]“Rhodium-Catalyzed Direct Amination of Benzamides with Aryl Azides: A Synthetic Route to Diarylamines"
Ryu, J.; Shin, K.; Park. S. H.; Kim, J. Y.; Chang, S.
Angew. Chem., Int. Ed. 2012, 51, 9904.
“Selected Paper in Cheminform”
[2] Rhodium-Catalyzed Intermolecular Amidation of Arenes with Sulfonyl Azides via Chelation-Assisted C-H bond Activation
Kim, J. Y.; Park. S. H.; Ryu, J.; Cho. S. H.; Kim, S. H.; Chang, S.
J. Am. Chem. Soc. 2012, 134, 9110.
[1] A Versatile Rh(I) Catalyst System Enabling the Addition of Heteroarenes to both Alkenes and Alkynes by a C-H Bond Activation Pathway
Ryu, J.; Cho, S. H.; Chang, S.
Angew. Chem., Int. Ed. 2012, 51, 3677.
“Selected as Hot Paper”
“Selected Paper in Cheminform”
Patents
[13] Non-precious metal-based water electrolysis catalyst for oxygen evolution and hydrogen evolution – US patent, 9751078
[12] Reversible fuel cell oxygen electrode, reversible fuel cell including the same, and method for preparing the same – US patent, 10601052
[11] Catalyst for oxygen reduction reaction and preparation method of the same
– US patent, 10144993
[10] Ultra-low loading of Pt-decorated Ni electrocatalyst – US patent, 10669640
[9] Complex apparatus of reversible electrodialysis equipment and desalination plant – US Patent Application Publication 2015/0266762, KR Patent 10-1661597
[8] Catalyst comprising Co-P core and carbon shell for alkaline oxygen reduction and its preparation method – KR Patent 10-1702929
[7] Complex catalyst for oxygen reduction reaction comprising metal catalyst coated with zwiterionic molecules, and its preparation method – KR Patent 10-1808304
[6] Preparation method of HT-PEMFC catalyst adsorbed surfactants
– KR Patent 10-1742799
[5] Alkaline anion exchange membrane water electrolyzer using Ni electrodeposited hydrophilic porous carbon material – KR Patent 10-1584725
[4] Polymer electrolyte membrane water electrolysis anode using IrO electrodeposited porous carbon material
– KR Patent Application Publication, 10-2016-0127535
[3] Method for synthesis of Nb-TiO2 catalyst supports using electrospinning
– KR Patent Application Publication, 10-2015-0028529
[2] Process for the preparation of arylamide and enamide derivatives using organic azide and iridium – KR Patent 10-1521092
[1] Process for the preparation of arylamines via rhodium-catalyzed intermolecular C-N cross coupling – KR Patent 10-1416077
bottom of page